Text Classification and Layout Analysis of Paper Fragments∗
نویسندگان
چکیده
Document image analysis such as text classification and layout analysis allow for the automated extraction of document properties. In general these methodologies are pre-processing steps for Optical Character Recognition (OCR) systems. In contrast, the proposed method aims at clustering document snippets so that an automated clustering of documents can be performed. First, localized words are classified according to printed text, manuscript, and noise. The third class permits the correction of falsely segmented background elements. Having classified the text elements, a clustering is carried out which groups words into text lines and paragraphs. A back propagation of the class weights assigned to each word in the first step enables correcting wrong class labels. Finally, additional features such as the detection of underlined text or the paragraph layout (e.g. left aligned, centered) are extracted. The proposed method shows promising results on a dataset consisting of document fragments with varying shapes, content writing and layout.
منابع مشابه
Document Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملLayout Analysis and Content Classification in Digitized Books
Automatic layout analysis has proven to be extremely important in the process of digitization of large amounts of documents. In this paper we present a mixed approach to layout analysis, introducing a SVM-aided layout segmentation process and a classification process based on local and geometrical features. The final output of the automatic analysis algorithm is a complete and structured annota...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کامل